	Questic	on	Answer	Marks	Guidance
1			$\mathbf{M}^{-1} = \frac{1}{108} \begin{pmatrix} 21 & 3 \\ -8 & 4 \end{pmatrix}$	M1* M1* A1	Attempt to find \mathbf{M}^{-1} or $108\mathbf{M}^{-1}$ Divide by their determinant, Δ , at some stage Correct determinant, (A0 for det $\mathbf{M} = \frac{1}{108}$ stated, all other
			$\frac{1}{108} \begin{pmatrix} 21 & 3 \\ -8 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix} = \begin{pmatrix} \frac{5}{18} \\ \frac{1}{27} \end{pmatrix}$	M1 A1	marks are available) Attempt to pre -multiply by inverse or by $\Delta \mathbf{M}^{-1}$ Correct matrix multiplication (allow one slip)
			$x = \frac{5}{18}$, $y = \frac{1}{27}$, oe	A1dep*	For both, cao x and y must be specified, may be in column vectors SC answers only B1
		OR		[6]	
		OK	4x - 3y = 1	M1	Using M to create two equations
			8x + 21y = 3	A1	Correct equations
			Eliminating x or y	M1	Any valid method
			Finding second unknown	M1	Valid method
			$x = \frac{5}{18}$, $y = \frac{1}{27}$ Allow 3 dp or better.	A1A1	For each cao. SC Answers only B1
				[6]	
2			2+3j and $2-3j$	B1	For both, accept $2 \pm 3j$
			Modulus = $\sqrt{(2^2 + 3^2)} = \sqrt{13}$	M1	Attempt at modulus of their complex roots
			Argument = $\pm \arctan\left(\frac{3}{2}\right) = \pm 0.983$	M1	Attempt at $\arctan\left(\pm\frac{3}{2}\right)$ ft their complex roots
			$2+3j$ has modulus $\sqrt{13}$ and argument 0.983	A1ft	Moduli specified, ft their roots. Accept √13 only
			$2-3j$ has modulus $\sqrt{13}$ and argument -0.983	A1ft	ft their roots - must be in $(-\pi, \pi]$ Accept $\pm 0.983, \pm 56.3^{\circ}$
				[5]	If 2 sf given accuracy MUST be stated.

Question	Answer	Marks	Guidance
3	$\frac{-p}{2} = 6 \Rightarrow p = -12$	M1,M1	M1 use of $\sum \alpha$ for p and M1 use of $\alpha \beta \gamma$ for r - allow one sign error; 2 sign errors is M1 M0
	$\frac{-r}{2} = -10 \Rightarrow r = 20$	A1 A1	for p , cao for r , cao
	OR $\alpha + \beta + 4 = 6$, $4\alpha\beta = -10$	OR	
	Implies α, β satisfy $2x^2 - 4x - 5 = 0$	M1	Valid method to create a quadratic equation
	Roots $1 \pm \frac{\sqrt{14}}{2}$	M1	Attempt to solve a 3-term quadratic
	$-\frac{p}{2} = 1 + \frac{\sqrt{14}}{2} + 1 - \frac{\sqrt{14}}{2} + 4 = 6 \implies p = -12$	A1	for p, cao
	Product of roots $=-10 = -\frac{r}{2} \Rightarrow r = 20$	A1	for r , cao
	THEN	THEN	
	EITHER $x = 4$ is a root, so $2 \times 64 + 16p + 4q + r = 0$	M1	Substitution and attempt to solve for coefficient of x^2 ,(or for the remaining unknown.) Allow making q the subject if p and r not found.
	OR $\alpha + \beta + 4 = 6 \Rightarrow \alpha + \beta = 2$		
	$4\alpha\beta = -10 \Rightarrow \alpha\beta = -\frac{10}{4}$ $\frac{q}{2} = 4\alpha + 4\beta + \alpha\beta = 4 \times 2 - \frac{5}{2}$		
	$\frac{q}{2} = 4\alpha + 4\beta + \alpha\beta = 4 \times 2 - \frac{5}{2}$		OR M1 using $\sum \alpha \beta$ OR use of remainder after division
	$\Rightarrow q = 11$	A1	for q , cao
		[6]	

(Questic	on	Answer	Marks	Guidance
4	(i)		Accept un-numbered evenly spaced marks on axes to show scale	B1	Line at acute angle, all or part in Im z>0
			4-	B1	Half line from -1- j through 0 [don't penalise if point -1- j
				[2]	is included] Allow near miss to 0 if $\pi/4$ marked
4	(22)			[2]	SC correct diagram, no annotations seen B1 B0
4	(ii)		3	B1 B1	Circle centre 1 + 2j Radius 2 Must touch real axis
				[2]	SC correct diagram, no annotations seen B1 B0
4	(iii)		2-	B1	The shaded region must be outside their circle and have a
•	(111)			D1	border with the circumference
			1-		
				B1	Fully correct
			-2 -1 6 1 2 3 4 6		SC correct diagram, no annotations seen allow B1 B1
				[2]	
5	(i)		$\sum_{n=0}^{\infty} (2n-1) = 2\sum_{n=0}^{\infty} n$	M1	Attempt to split into two sums (May be implied)
			$\sum_{r=1}^{\infty} (2r-1) - 2\sum_{r=1}^{\infty} r - n$		
			$\sum_{r=1}^{n} (2r-1) = 2\sum_{r=1}^{n} r - n$ $= n(n+1) - n = n^{2}$	M1 A1	Use of standard result for Σr cao (must be in terms of n)
					SC Induction: B1 case $n = 1$: E1 sum to $k + 1$ terms
					correctly found: E1 argument completely correct
				[2]	
5	(ii)		n	[3] M1	Use of result from (i) in numerator of a fraction
			$\frac{\sum_{r=1}^{n} (2r-1)}{\sum_{r=1}^{n} (2r-1)} = \frac{n^2}{(2n)^2 - n^2}$		X /
			$\frac{r=1}{2n} = \frac{n}{(2n)^2}$	M1	Expressing denominator as $\sum_{r=1}^{2n} \dots - \sum_{r=1}^{n} \dots$ need not be
			$\sum (2r-1) (2n) -n^2$		explicit, or other valid method. $r=1$
			r=n+1	A1	Correct sums
				711	
			n^2 1		. 1
			$=\frac{n^2}{3n^2}=\frac{1}{3}=k$	A1	$k = \frac{1}{3}$
			<i>SII S</i>	[4]	
				[4]	

	Question	Answer	Marks	Guidance
6		$u_1 = 3$ and $\frac{3^{1-1} + 5}{2} = 3$, so true for $n = 1$	B1	Must show working on given result with $n = 1$
		Assume true for $n = k$ $\Rightarrow u_k = \frac{3^{k-1} + 5}{2}$	E1	Assuming true for k Allow "Let $n = k$ and (result)" "If $n = k$ and (result)" Do not allow " $n = k$ " or "Let $n = k$ ", without the result quoted, followed by working
		$\Rightarrow u_{k+1} = 3\left(\frac{3^{k-1}+5}{2}\right) - 5$	M1	u_{k+1} with substitution of result for u_z and some working to follow
		$=\frac{3^k+15}{2}-5$		
		$=\frac{3^k + 15 - 10}{2}$		
		$=\frac{3^k+5}{2}$	A1	Correctly obtained
		$=\frac{3^{n-1}+5}{2}$ when $n=k+1$		Or target seen
		Therefore if true for $n = k$ it is also true for $n = k + 1$.	E1	Both points explicit Dependent on A1 and previous E1
		Since it is true for $n = 1$, it is true for all positive integers, n .	E1 [6]	Dependent on B1 and previous E1
7	(i)	Asymptotes: $y = 3$,	B1	
		x = 2, x = -1	B1 B1	(both) Allow $x = 2$, -1 Must see values for x and y if not written as co-ordinates
		Crosses axes at $(0, 3)$		
		$\left(\frac{-2}{3},0\right),\left(3,0\right)$	B1	(both) Must see values for <i>x</i> and <i>y</i> if not written as coordinates.
	<u> </u>		[4]	·

	Questio	n Answer	Marks Guidance	Guidance
7	(ii)	Answer $(0,3)$ $(-\frac{2}{3!},0)$ $(3,0)$ $(3,0)$	B1 B1 B2	Intercepts labelled (single figures on axes suffice) Asymptotes correct and labelled. Allow $y = 3$ shown by intercept labelled at $(0,3)$ and $x = 2$ and $x = -1$ likewise Three correct branches (-1 each error)
7	(iii)	when x is large and positive, graph approaches $y = 3$ from below, e.g. for $x = 100$, $\frac{302 \times 97}{98 \times 101} = 2.9$ When x is large and negative, graph approaches $y = 3$ from above, e.g. for $x = -100$, $\frac{-298 \times -103}{-102 \times -99} = 3.03$ $y \ge 3 \Rightarrow 0 \le x < 2$ or $x < -1$	[5] B1 B1B1 [3]	Any poorly illustrated asymptotic approaches penalised once only. Approaches to $y=3$ justified There must be a result for y $x<-1$ $0 \le x < 2 \text{ (B1 for } 0 < x < 2 \text{ or } 0 \le x \le 2) \text{ isw any more shown}$

	Question	Answer	Marks	Guidance
8	(i)	$(5+4j)^2 = (5+4j)(5+4j) = 25+40j-16 = 9+40j$	M1 A1	Use of $j^2 = -1$ at least once
		$(5+4j)^3 = -115 + 236j$	A1 [3]	
8	(ii)	$\alpha^{3} + q\alpha^{2} + 11\alpha + r = 0$ $\Rightarrow -115 + 236j + 9q + 40qj + 55 + 44j + r = 0$	M1	Substitute for α
		$\Rightarrow (236 + 40q + 44) j = 0 , -115 + 9q + 55 + r = 0$	M1	Compare either real or imaginary parts
		$\Rightarrow q = -7$	A1ft	$q = -7$ ft their α^2 and α^3
		$\Rightarrow r = 123$	A1ft [4]	$r = 123 \text{ft their } \alpha^2 \text{ and } \alpha^3$
8	(iii)	$f(z) = z^3 - 7z^2 + 11z + 123$ Sum of roots = 7 $\Rightarrow (5+4j) + (5-4j) + w = 7$ $\Rightarrow w = -3$	M1	Valid method for the third root. (division, factor theorem, attempt at linear x quadratic with complex roots correctly used)
		Roots are $5+4j$ and $5-4j$ and -3	B1 A1 [3]	quoted cao real root identified, A0 if extra roots found
8	(iv)	$zf(z) = f(z) \Rightarrow (z-1)f(z) = 0$ \Rightarrow z = 1 or f(z) = 0 \Rightarrow z = 1, z = -3, z = 5 + 4j, z = 5 - 4j	M1 A1ft [2]	solving $z-1=0$, and $f(z)=0$ (may be implied) For all four solutions [ft (iii)] NB incomplete method giving $z=1$ only is M0 A0

	Questi	on	Answer	Marks	Guidance
9	(i)		$\begin{pmatrix} 1 & -2 \\ 3 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 4 \\ 0 & 2 & 1 \end{pmatrix}$	M1	Any valid method – may be implied
			$= \begin{pmatrix} 0 & -4 & 2 \\ 0 & 0 & 12 \end{pmatrix}$	A1	Correct position vectors found (need not be identified)
			A' = (0, 0), B' = (-4, 0), C' = (2, 12)	A1ft [3]	co-ordinates, ft their position vectors A', B', C' identifiable. Coordinates only, M1A0A1
9	(ii)		M represents a two-way stretch factor 4 parallel to the <i>x</i> axis	B1	Stretch. (enlargement B0)
			factor 2 parallel to the y axis	B1 B1 [3]	Directions indicated
9	(iii)		$ \begin{pmatrix} 4 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & -2 \\ 3 & 0 \end{pmatrix} $	M1	Attempt at MT in correct sequence
			$= \begin{pmatrix} 4 & -8 \\ 6 & 0 \end{pmatrix}$	A1	cao
			Represents the composite transformation T followed by M $ \begin{pmatrix} 4 & -8 \\ 6 & 0 \end{pmatrix}^{-1} = \frac{1}{48} \begin{pmatrix} 0 & 8 \\ -6 & 4 \end{pmatrix} $ represents the single transformation	A1	cao
				[3]	
		OR	$\frac{1}{6} \begin{pmatrix} 0 & 2 \\ -3 & 1 \end{pmatrix} \frac{1}{8} \begin{pmatrix} 2 & 0 \\ 0 & 4 \end{pmatrix} = \frac{1}{48} \begin{pmatrix} 0 & 8 \\ -6 & 4 \end{pmatrix}$	B1 M1 A1 [3]	for T ⁻¹ and M ⁻¹ correct for attempt at T ⁻¹ M ⁻¹ cao
		OR	$ \begin{pmatrix} 0 & -16 & 8 \\ 0 & 0 & 24 \end{pmatrix} \text{ whence } \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} 0 & -16 & 8 \\ 0 & 0 & 24 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 4 \\ 0 & 2 & 1 \end{pmatrix} $	M1 A1	Finding A", B" and C" coordinates or position vectors For correct position vectors
			$\Rightarrow \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \frac{1}{48} \begin{pmatrix} 0 & 8 \\ -6 & 4 \end{pmatrix}$	A1	Inverse matrix correctly found
				[3]	

4755 Mark Scheme June 2015

(Question		Answer		Guidance	
9	(iv)		Area scale factor = 48	B1		
			Area of triangle ABC = 4 square units Area of triangle A"B"C" = 48× area of triangle ABC = 192 (square units)	M1	Using their "48" and their area of triangle ABC, correct triangle	
				A1	Or other valid method cao	
				[3]		
		OR	Finding A" B" C" (0,0) (-16,0) (8,24) and using them Finding the area of A" B" C" Area of triangle = 192 (square units)	B1 M1 A1	A" B" C" may be in (iii) Any valid method attempted cao (possibly after rounding to 3 sf)	